

AMO UWB Module(SR150)

Rev 0.1 (ASMOP1BO0N21)

Revision	Contents	Date
0.0	New	6th, Dec, 2021.
0.1	Modified the some parts	19th, Jan, 2022

19th, Jan, 2022

AMOSENSE Co., LTD.

Notes

The contents of this data sheet are subject to change without notice. Please confirm the specifications and delivery conditions when placing your order.

Table Of Contents

- 1. Introduction
- 2. Part Numbering
- 3. Module Block Diagram
- 4. Module Characteristics
- 5. Power Up
- 6. SYSTEM MODES
- 7. SPI Host Interface
- 8. Secure Element (SE) interface
- 9. RF connections
- 10. Application design-in information
- 11. Module Package
- 12. Packing
- 13. Soldering Condition
- 14. Glossary

1. Introduction

The UWB module is based on NXP's SR150 Ultra Wideband (UWB) transceiver IC. It integrates all RF circuitry and clock circuitry in one module compliant to IEEE 802.15.4/4z HRP UWB PHY.

It can be used for 2-way ranging measurement and TDoA based one way ranging. Embedded PHY and MAC compatible with FiRa consortium specification

▶ This device is prohibited application to aircraft, ships, satellites, and model airplanes.

1.1 Key Features

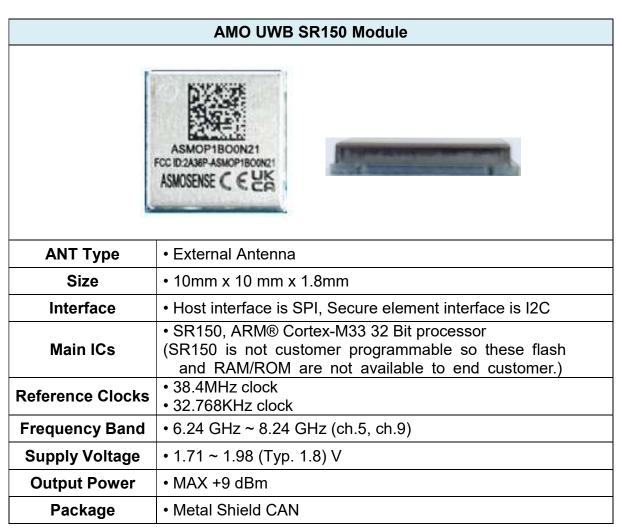
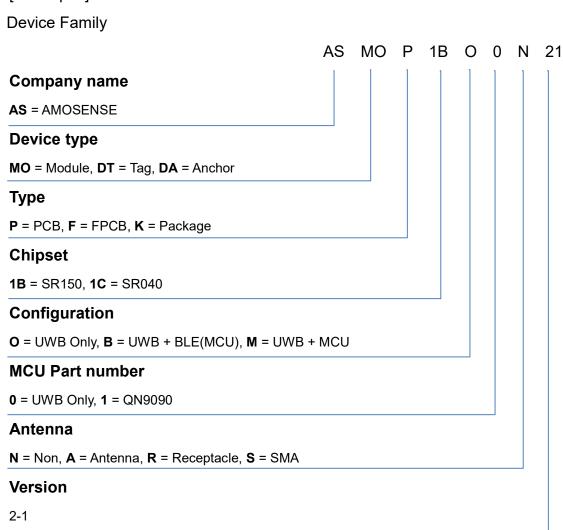


Table 1. Key Features

* Shield CAN size: 9.3mm x 9.3mm x 1.15mm



1.2 Applications

- ① IOT applications
- ② Consumer devices
- ③ Smart home devices
- 4 RTLS anchor etc.

2. Part Numbering

[Example]

Note: Provisional designation

3. Module Block Diagram

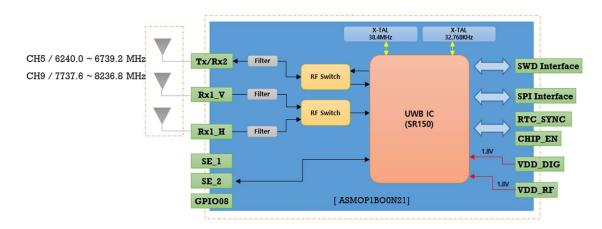


Figure 1. Block Diagram of AMO UWB Module

4. Module Characteristics

4.1 Electrical Characteristics

Parameter	Min	Тур.	Max	Unit
Supply Voltage(VDD)	1.71	1.8	1.98	V
SR150 Current Consumption - Hard Power Down State - Peak Current RX(Dual RX) - Peak Current TX(Max)	ı	-	5 306 273	uA mA mA
Operating Temperature	-30	25	+85	°C
Max. Input level		-	7	dBm
ESD (Human Body Model)			2000	V

Table 2. Electrical Characteristics

4.2 RF Characteristics

• $T = 25^{\circ}C$, VDD = 3.3 V (typ.)

Parameter	Condition	Min	Тур.	Max	Unit	
Frequency Range		6.24	-	8.24	GHz	
TV Output Bower	CH5 during preamble peak		9.5		dBm	
TX Output Power	CH9 during preamble peak		10.5		ubili	
Data Rate		0.85	6.8	31.2	Mbps	
_	SNR ≥ 34dB at input	-3		+3		
AOA accuracy	26dB ≤ SNR < 36dB at input	-10		+10	Deg	
ToF accuracy	LOS when STS is used	-10		+10	Cm	
TOF accuracy	NLOS when STS is used	-20		+20	Cili	
RF Sensitivity	Single / 6.8 Mbps		-92		dBm	
RF Selisitivity	Dual / 6.8 Mbps		-94		ubili	

Table 3. RF Characteristics

5. Power Up

SR150 Module has a main power up sequence that require VDD. High level boot sequence is indicated below, when voltages are settled down CE can be asserted along with VDD within 50us, else design will transition to HPD state.

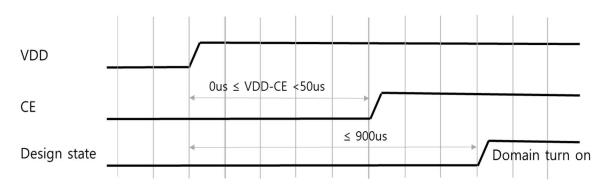


Figure 2. power up sequence

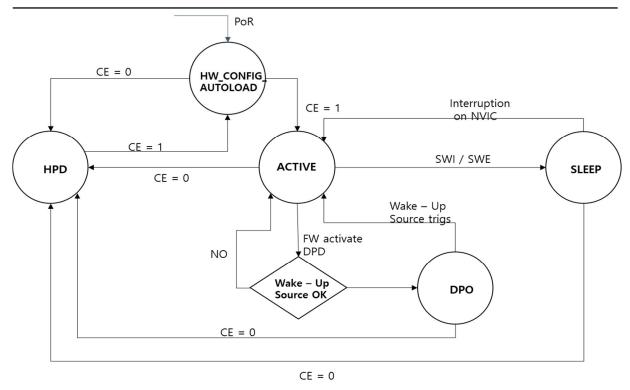


Figure 3. SR150 power modes state diagram

6. SYSTEM MODES

The SR150 Module has 6 power modes that are specified: Host power down mode, Deep power down mode, Deep power down retention mode, Sleep, Active mode and Hardware configuration Autoload. A description of the states can be found in Table 4

System power state	Description
Active mode	The device is running and supplied by the Platform PMU, in this mode several active states are available: Idle, TX, RX and Dual RX
Deep power down mode (DPD)	The device is in low power mode and supplied by the Platform PMU, the memory are not supplied, a configured wake up can bring the device back to the Active mode, for this a firmware reload is necessary, no RF communication is possible
DPD retention mode	The device is in deep power down mode but the memory is supplied
Sleep	Specific parts can be active or inactive, this sleep mode can be configured by firmware which enables several power states, no RF communication is possible
Hard power down mode	The device is powered down and supplied by the PMU, it can by activated by the chip enable signal
Hardware configuration Autoload	The devices is supplied by the platform PMU and is loading the Hardware configuration and firmware into the memory

Table 4. System Power states description

The time required for SR150 to go into DPD from is <100us controlled by the firmware.

Similarly, the required time for SR150 to enter HPD state is less than 100us starting for the instance that CE is de-asserted. The Wakeup timing from DPD state is around 370 us, the wakeup form HPD state is triggered once CE is asserted and takes around 380us.

7. SPI Host Interface

SPI-bus Master/Slave interface, up to 20 Mbits/s

Features

- Synchronous, Serial, Full-Duplex communication, up to 16.66 Mbits/s
- · Data frames of 8-bits and 16bits supported
- Programmable clock polarity and phase
- · LSB/MSB first order
- Programmable SSEL polarity

SPI-bus configuration options In order to select SPI-bus interface for host communication, the host interface choice and settings are programmed during production. The SPI-bus IP supports four operating modes selectable using SPInCfg register. The operation mode of the SPI-bus is shown in Table 5, CPHA refers to the Clock Phase option and CPOL refers to the Clock Polarity.

Connection

CPHA switch: Clock Phase: defines the sampling edge of MOSI data

- CPHA = 1: data are sampled on MOSI on the even clock edges of SCK after NSS goes low
- CPHA = 0: data are sampled on MOSI on the odd clock edges of SCK after NSS goes low

CPOL switch: Clock Polarity

- CPOL = 0: the clock is idle low and the first valid edge of SCK will be a rising one
- CPOL = 1: the clock is idle high and the first valid edge of SCK will be a falling one

Table 5. SPI-bus configuration

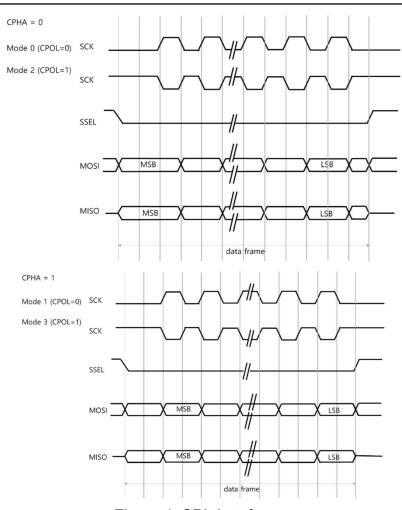


Figure 4. SPI date frame

The SPI-bus interface shares the pins with the other host interfaces that are supported by SR150. When SPI-bus is configured the functionality of the interface pins is as described in Table 6.

When a master device transmits data to the SR150 via the MOSI line, the SR150 responds by sending data to the master device via the MISO line. This implies full-duplex transmission with both, data out and data in synchronized with the same clock signal.

SR150 starts sampling when receiving a logic low at pins NSS Host_2 pin and the clock at input pin HOST_1. Thus, SR150 is synchronized with the master. Data from the master is received serially at the slave MOSI line and loaded in the 8-bit shift register.

After the 8bit shrift register is loaded, its data is transferred to the read buffer. During a write cycle, data is written into the shift register, then the SR150 waits for a clock train form the master to shift the data out on the MISO line.

Both master and slave devices must operate with the same timing. The master device always places data on the MOSI line a half cycle before the clock edge SCK, for the slave device to latch the data.

Pin	functionality	HW connection when used	HW connection when NOT used
	Host conntection		
Host_1	SCK (Serial input Clock)	host	Must be connected
Host_2	NSS (Not Slave Select)	host	Must be connected
Host_3	MOSI (Master Out Slave In) Data input	host	Must be connected
Host_4	MISO (Master In Slave Out) Data output	host	Must be connected
GPIO05_SENSORINT	IRQ sent to the Host to let it know data are available for read	host	Must be connected
CHIP_EN	connection for the HOST to disable/enable the chip	host	Must be connected
RTC_SYNC	TBD	TBD	TBD
GPIO03_WAKEUP	SPI Rx Handshake from Host to SR150	host	Must be connected

Table 6. the functionality of the interface pins

8. Secure Element (SE) interface

I2C Connections with SE for secure ranging are described below.

Pin	functionality
SE_1	SCL
	10k pull up to VDD 1V8 to be tune according to I2C line shape analysis
SE_2	SDA (secure keys generated by SE exchange)
	10k pull up to VDD 1V8 to be tune according to I2C line shape analysis
GPIO08	Host Secure Element interrupt (IRQ flag to indicate that data are
	ready to be shared via I2C)

Table 7. Secure Element (SE) interface

9. RF connections

SR150 has 2 RF inputs (RX1, RX2) and one RF output (TX). Our module has changed RF Pass to Tx/Rx2, Rx1_V and Rx1_H by embedded RF Switch. These 3 RF ports can be connected to 3 antennas. RX1_V and RX1_H path was guarantee the same path characteristics (insertion loss, electrical delay).

Connecting each Antenna to the Tx/Rx2 pad and Rx1_H pad are fulfilled ranging and 2D AoA.

10. Application design-in information

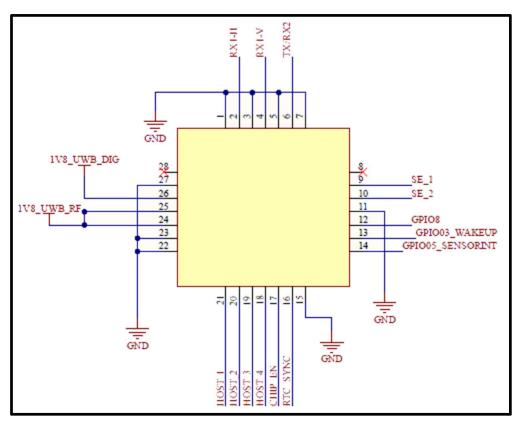


Figure 5: UWB SR150 Module Reference Circuit

11. Module Package

11.1 Pinout Description

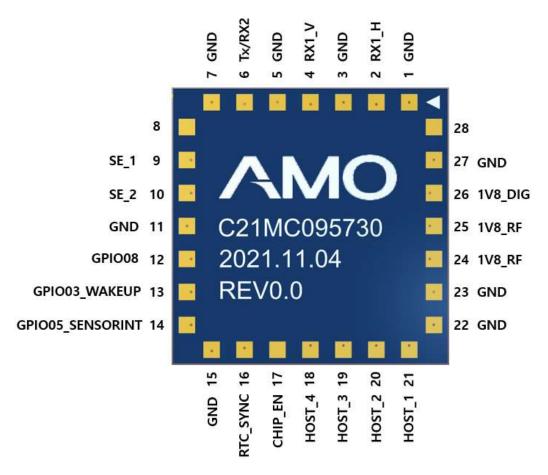


Figure 6 : Pin out Description(Bottom View)

11.2 Pin Description Box

PIN	PIN Name	PIN Type	Description
P1	GND	G	Ground supply
P2	RX1_H	I	RX1_Horizontal IN
P3	GND	G	Ground supply
P4	RX1_V	I	RX1_Vertical IN
P5	GND	G	Ground supply
P6	TX/RX2	I/O	TX OUT / RX2 In
P7	GND	G	Ground supply
P8	-	-	-
P9	SE_1	I/O	clock for the secure element I2C interface
P10	SE_2	I/O	SDA connection for secure element I2C interface
P11	GND	G	Ground supply
P12	GPIO8	I/O	SE_IRQ. GPIO8
P13	GPIO03_WAKEUP	I/O	Host wakeup
P14	GPIO05_SENSORINT	I/O	GPIO05
P15	GND	G	Ground supply
P16	RTC_SYNC	ı	Real Time Clock Synchronization
P17	CHIP EN	I/O	connection for disabling/ enabling the chip
P18	HOST_4	I/O	MISO connection for the SPI host interface
P19	HOST_3	I/O	MOSI connection for the SPI host interface
P20	HOST_2	I/O	Slave select connection for the SPI host interface
P21	HOST_1	I/O	clock for the SPI host interface
P22	GND	G	Ground supply
P23	GND	G	Ground supply
P24	VDD_1.8V_RF	Р	1.8V Power supply for RF
P25	VDD_1.8V_RF	Р	1.8V Power supply for RF
P26	VDD_1.8V_DIG	Р	1.8V Power supply for Digital
P27	GND	G	Ground supply
P28	-	-	-

Table 8. Pin Description

11.3 Module Dimension or Footprint

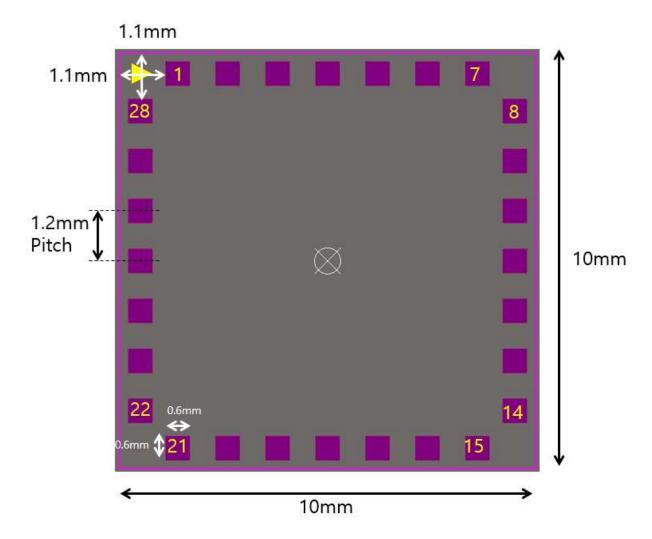


Figure 7. Pin Dimension or Footprint (TOP View)

12. Packing

Description	Data
Module Dimension	10mm*10mm*1.8mm
Reel Carrier Pocket	24W*20P
Reel Cover Tape	21.3mm*480m
Module Quantity	1K

Table 9. Reel Packing Description

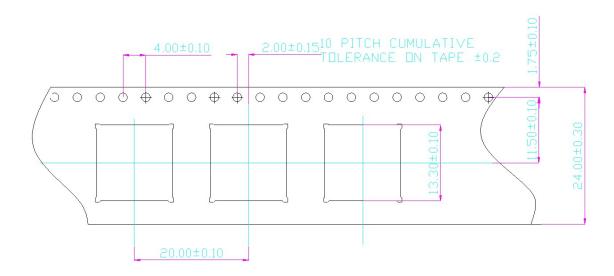
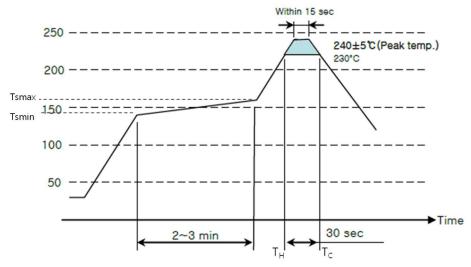


Figure 8. Reel Packing

13. Soldering Condition


13.1 Manual Soldering - Pb Free

① Soldering Temperature: 360°C ± 5°C, 5sec max.

(Solder : Sn /Ag /Cu : 96.5 /3.0 /0.5)

② Moisture sensitivity precautions, as indicated on the packing, must be respected at all times

13.2 Recommended Reflow Condition - Pb Free

Profile Feature	Pb-Free Assembly
Preheat	
-Temperature Min (T _{smin})	-140°C
-Temperature Typical (T _{stypical})	-150°C
-Temperature Max (T _{smax})	-160°C
-Time T _{smin} to T _{smax}	-2 ~ 3 min
Peak Temperature	240±5°C
Time of actual peak temperature	Max. 15 seconds
Heating to Cool	
-Temperature Heating (T _H)	-230°C
-Temperature Cool (Tc)	-230°C
-Time T _H to T _C	-30 seconds

14. Glossary

Abbreviation	Long term
AoA	Angle of arrival
DPD	Deep Power Down
HPD	Hard Power Down
HRP	High Rate Pulse Repetition Frequency
NC	Not Connected
OTP	One Time Programmable
PMU	Power Management Unit
RF	Radio Frequency
RSSI	Received Signal Strength Indicator
RTLS	Real-time locating systems
RX	Receiver
SFD	Start of Frame Delimiter
SNR	Signal to Noise Ratio
SPI	Serial Peripheral Interface
STS	Secure Training Sequence
SWD	Serial Wire Debug
TDoA	Time Difference Of Arrival
ToF	Time of Flight
TX	Transmitter
UART	Universal Asynchronous Receiver and Transmitter

AMOSENSE

AMO UWB Module Series Data Sheet

DOCUMENT INFORMATION

Disclaimer

AMOSENSE reserves the right to change product specifications without notice. As far as possible changes to functionality and specifications will be issued in product specific errata sheets or in new versions of this document. Customers are advised to check with AMOSENSE for the most recent updates on this product.

Copyright © 2022 AMOSENSE Ltd.

Regulatory notice to host manufacturer according to KDB 996369 D03 OEM Manual

List of applicable FCC rules

This module has been granted modular approval as below listed FCC rule parts.

FCC Rule parts 15C (15.209), 15F (15.519)

Limited module procedures

The module is approved as a "limited module" without shielding. The device can be used in mobile exposure conditions only. This equipment should be installed and operated with minimum distance 20cm between the radiator & your body.

RF exposure considerations

The module must be installed in the host equipment such that at least 20cm is maintained

between the antenna and users' body; and if RF exposure statement or module layout is

changed, then the host product manufacturer required to take responsibility of the module

through a change in FCC ID or new application. The FCC ID of the module cannot be used

on the final product. In these circumstances, the host manufacturer will be responsible for

re-evaluating the end product (including the transmitter) and obtaining a separate FCC

authorization.

Antennas

Antenna Specification are as follows:

Type: Dipole Antenna

Gain: 3.58 dBi

This device is intended only for host manufacturers under the following conditions:

The transmitter module may not be co-located with any other transmitter or antenna;

The antenna must be either permanently attached or employ a 'unique' antenna coupler.

As long as the conditions above are met, further transmitter test will not be required.

However, the host manufacturer is still responsible for testing their end-product for any

additional compliance requirements required with this module installed (for example, digital

device emissions, PC peripheral requirements, etc.)

That the antenna cannot be mounted on outdoor structures. antennas mounted on the

outside of a building or on a telephone pole.

Label and compliance information

The module is labeled with its own FCC ID Certification Number.

If the FCC ID Certification Number are not visible when the module is installed inside another

device, then the outside of the device into which the module is installed must also display

a label referring to the enclosed module.

Contains FCC ID: 2A36P-ASMOP1BO0N21

Information on test modes and additional testing requirements

Operation Frequency: 6 ~ 8.5 GHz

Max Target Power: -41.5 dBm

Modulation: Orthogonal Frequency Division Multiplexing

Additional testing, Part 15 Subpart B disclaimer

The modular transmitter is only FCC authorized for FCC Part 15 Subpart C 15.209 and that

the host product manufacturer is responsible for compliance to any other FCC rules that

apply to the host not covered by the modular transmitter grant of certification. If the grantee

markets their product as being Part 15 Subpart B compliant (when it also contains

unintentional-radiator digital circuity), then the grantee shall provide a notice stating that

the final host product still requires Part 15 Subpart B compliance testing with the modular

transmitter installed.

This is a limited module authentication case, and C2PC progress is required when the host

is changed.

AMOSENSE

AMO UWB Module Series Data Sheet

Host manufacturer must perform test of radiated & conducted emission and spurious

emission, etc. according to the actual test modes for a stand-alone modular transmitter in

a host, as well as for multiple simultaneously transmitting modules or other transmitters in

a host product.

Only when all the test results of test modes comply with FCC requirements and C2PC grant

is issued, then the end product can be sold legally

FCC Instructions

FCC Compliance Statement

This device complies with part 15 of the FCC rules. Operation is subject to the following two

conditions: (1) This device may not cause harmful interference, and (2) this device must

accept any interference received, including interference that may cause undesired operation.

FCC Caution

Any changes or modifications not expressly approved by the party responsible for

compliance could void the user's authority to operate this equipment. This transmitter must

not be co-located or operating in conjunction with any other antenna or transmitter.

UWB devices operating under the provisions of this section must be hand held. (This module

may only be used in handheld host.)

A UWB device operating under the provisions of this section shall transmit only when it is

sending information to an associated receiver. The UWB intentional radiator shall cease

transmission within 10 seconds unless it receives an acknowledgement from the associated

receiver that its transmission is being received. An acknowledgment of reception must

continue to be received by the UWB intentional radiator at least every 10 seconds or the UWB device must cease transmitting.

CE RED_EU declaration

This product can be used in which EU members, in accordance with Article 10(10) / or this product can be used in at least one EU country, in accordance with Article 10(2)

RF Exposure

The RF distance between body and product is 20cm

Declaration of Conformity

Manufacturer Name:	AMOSENSE CO., LTD.	
Manufacturer Address:	19-1BL, 90, 4Sandan 5-gil, Jiksan-eup, Seobuk-gu, Cheonan-si,	
	Chungcheongnam-do, South Korea	
Importer Name*:	(Under Article 10(2) and 10(10), there are no restrictions of use)	
(Or authorized	EBV Elektronik	
representative):		
Importer Address:	Im Technologiepark 2-8 85586 Poing Germany	
Declare under our sole respon		
Product Type/Description:	UWB Module	
Model:	ASMOP1BO0N21	
Variant Model:	N/A	
Trade Name:	N/A	
Product Identification	N/A	
Product Accessories (if	N/A	
Hardware version	Rev 4.0	
Software version	Rev 1.0(A27/v03.08.01)	
Is in conformity with the	following standards or other normative documents	
Test standards		
	1 V2.1.1 (2016-11), EN 50663:2017 1 V2.2.3 (2019-11), ETSI EN 301 489-33 V2.1.1(2019-04)	
Safety : EN IEC 62368-1:2		
We hereby declare that [all essential radio test suites have been carried out and that] the above named	
•	to all the essential requirement of Directive 2014/53/EU.	
•	ent procedure referred to in Article 17 and detailed in Annex [III] of Directive lowed with the involvement of the following Notified Body(ies):	
PHOENIX TESTLAB Gmb	H (Notified Body Number: 0700) Königswinkel 10 D-32825 Blomberg Germany	
Name :	Kyunghyun Ryu	
Title :	Executive Director	
Address:	19-1BL, 90, 4Sandan 5-gil, Jiksan-eup, Seobuk-gu, Cheonan-si,	
	Chungcheongnam-do, South Korea	
Date: February 04, 2022	Signature of Authorized person	
Date. Febluary 04, 2022	Signature of Authorized person	